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Abstract 
Many challenges in systems biology have to do with analyzing data within the framework of 
molecular phenomena and cellular pathways. How does this relate to thermodynamics that 
we know govern the behavior of molecules? Making progress in relating data analysis to 
thermodynamics is essential in systems biology if we are to build predictive models that 
enable the field of synthetic biology. We discuss work at the crossroads of thermodynamics 
and data analysis and demonstrate that statistical mechanical free energy is a multinomial log 
likelihood. Applications to systems biology are presented. 

 
1. Introduction 
Many challenges in systems biology have to do with analyzing data within the framework of 
molecular phenomena and cellular pathways. Many analogies have been used to describe the 
cell as a system, including electrical circuits [1], chemical factories [2], and computers [3]. 
While all these analogies have merit when evaluated in context, over 100 years of statistical 
physics has taught us that thermodynamics govern the behavior of molecules. There is no 
reason to believe that the laws of physics have been suspended in the case of biological 
phenomena.  

How does data analysis of biological systems relate to thermodynamics that we know govern 
the behavior of molecules? Making progress in relating data analysis to thermodynamics is 
essential in systems biology if we are to build predictive models that enable the field of 
synthetic biology [4, 5].  

Thus, thermodynamics should be a natural way to integrate the analysis of data with 
scientific models of cellular function. However, data analysis methods and protocols rarely 
use the language of statistical physics. Instead, bioinformaticists most often use the language 
and methods of statistics to describe and analyze biological data. Indeed, principled statistical 
approaches have led to clear and demonstrably better analysis methods than ad hoc 
procedures. Nevertheless, integration of statistical thermodynamics into the data analysis 
should in principle open the door for integrating scientific models tightly with analysis of 
large datasets typical of systems biology.   

We discuss in this paper work at the crossroads of thermodynamics and data analysis and 
demonstrate that free energy is a statistical multinomial log likelihood. Applications to 
systems biology are discussed. As an example, the application of a thermodynamically 



inspired log likelihood analysis to proteomics data analysis increases the number of spectra 
that can be identified and associated with biological processes by 50–150%. 

 
2. Free Energy is a Multinomial Log Likelihood 

Free energies are formulated from partition functions, while data analysis methods use 
probabilistic approaches such as likelihoods. This section examines each perspective and 
explores the different terminologies used in these approaches and the overlap between 
likelihoods and free energies. The relation between free energy, likelihood, and Shannon’s 
entropy are examined. 

Data Analytics Perspective: Multinomial likelihoods. First, we consider the analysis of data 
from a purely descriptive and statistical perspective. For the sake of demonstration, we 
consider assessing the likelihood of the distribution of products from a reaction, b  a1,…ak. 
In this example, ntot identical reactant molecules, b, give rise to k different reaction products, 
a1,…ak. In the reaction, each b molecule reacts to produce a product ai, and n = {ni} is the 
vector count of the number of reactants, ni ≤ ntot. The probability of forming product ai 
depends on the molecular energy (ε ) required for the chemical reaction and the temperature 
of the system; we denote this probability as θi(ε,T). Each of the ni products is independent 
and indistinguishable, but each of the products ai is distinguishable from the other products. 
For product, the probability θi and the data ni can be used to form a multinomial model of 
producing the products 
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p(n |θ) = ntot!
1
n j!j

k

∏ θ j (ε,T)
n j  .                              (1) 

The term on the left-hand side is the likelihood, 

€ 

p(n |θ) , for observing the products 
distributed according to n given the model parameters θ .   There are no terms 

€ 

(1−θi(ε,T)) 
when product ai is missing in the equation above because these are accounted for by the 
probabilities for other products: 

€ 

(1−θi(ε,T)) = θ j (ε,T)
j≠ i
∑ . Assuming that one can accurately 

count the products using an experimental apparatus, the calculation of this distribution for 
any set of products is relatively straightforward in principle. However, this formulation is 
difficult to use in practice because the parameters θi refer to the microscopic state and are not 
known. In fact, in most experimental measurements the energy levels of the individual 
molecules are not observed; instead, the average energy of a collection of molecules is 
measured. However, the analysis can instead be treated on the macroscopic level such that 

€ 

p(n |θ) = ntot!
1
n j!j

k

∏ θ j (T)
n j  .                                         (2) 

In this case, the probabilities 

€ 

θ j (T)  are measured as a function of temperature only, and 
energy levels are not resolved. The 

€ 

θ j (T)  can be estimated from counts such that the model 
parameters for any product ai are the number of observed products ni out of ntot fragments,
  



€ 

θi(T) =
ni
ntot

.  

That is, 

€ 

θi(T)  is the estimated probability of observing ni molecules of product ai out of ntot 
product molecules when the measurement is done at temperature T.  

 

Thermodynamic Perspective: Partition Functions. Statistical mechanics is the foundation for 
thermodynamics, which consists of the statistical description of the physics of the molecular 
processes and interactions. The key concept in deriving thermodynamic properties from 
energetics is the partition function, qi,, which accounts for energy levels l for each chemical 
species ai . This function is given by the following. 

€ 

qi = e
−ε il

RT

l
∑  

The Helmholtz free energy can then be expressed in terms of partition functions. 

€ 
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kBT

= log ntot!
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Here, kB is Boltzmann’s constant, T is the absolute temperature in Kelvin, and qj is the 
molecular partition function that accounts for energy levels for each product j. As in the data 
analysis description previously, , and the vector quantities n = {ni} are fixed. For 
convenience, we rewrite the free energy as 
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                             (3) 

 
The likelihood formulation used in data analysis can be recovered from this latter 
formulation. First, we note that the microscopic probabilities θi(ε,T) used in the likelihood 
formulation are the Boltzmann probabilities, 

,    

in which εil is the lth energy level for product ai [6]. The denominator is the multiproduct 

partition function that accounts for all products j, . The partition function can 

be recognized as the cumulative distribution of the likelihood of each product aj, which 
measures the extent of the available state space. Marginalizing this probability over the 
available energy levels gives, for a given product,  
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θ i(T) =

e
−ε il

RT

l
∑

q

=
qi
q

 ,   

where qi is the molecular partition function discussed above. As a result, the likelihood of 
Equation 2 is proportional to the product of the molecular partition functions defined above,
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Substituting this equality into the left-hand side of Equation 3 gives 
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kBT

= log ntot!
qntot
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1
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= log p(n,V ,T |θ ) + ntot logq .

 

This says that the free energy of a system with n = {ni} species, volume V, and temperature T 
depends on the likelihood p(n,V,T|θ) and the total state space, or likelihood distribution, 
available to the molecules. The only assumption about equilibrium regarding 

€ 

θi  is that the 
degrees of freedom in the physical system are coupled such that energy can be transferred 
among the species; that is, it is assumed that the 

€ 

θi  reflect the true Boltzmann probabilities. 
The second term on the right-hand side elucidates the primary difference between free energy 
and a data analysis approach, and that is a difference in normalization. While the statistical 
likelihood uses the cumulative distribution among the products as a normalization factor, free 
energies are based on a physical scale referenced to a temperature of absolute zero and 
perfect order. 

For a general chemical reaction given by 

1 2 1 2m la a a b b b→+ + + + + +←  ,                

the relative free energy that determines whether the products or reactants will be observed is 
given by [7] 

€ 

Δa /kBT = −log pb (nb ,V ,T |θ)
pa (na ,V ,T |θ)

− log qb
nb ,tot

qa
na ,tot

  .
                             (4) 

While the first term on the right-hand side compares the likelihood of each served 
distribution, the second term compares the extent of each state space including the distance 



of each distribution from perfect order at absolute zero. The first term on the right hand side 
is the likelihood ratio often used in data analysis: 

€ 

LR = −log pb (nb ,V ,T |θ )
pa (na ,V ,T |θ )

= −log
nb,tot!

1
nb, j!

θb, j
nb , j

j
∏

na,tot!
1
na, j!

θa, j
na, j

j
∏

.
 

A typical goal in data analysis is to infer which of two scientific models of the observed 
phenomena best explains the data. In this scenario, the competing scientific models are 
represented by the parameters 

€ 

θa, j and 

€ 

θb, j , respectively, and the observations are represent 
by 

€ 

nobs = na = nb . The log likelihood ratio simplifies to 
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logLR = log
θa, j

θb, j
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j

N
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Strictly speaking, the ni refer to counts of molecules. However, using raw counts obtained 
from experimental measurements for ni can be problematic if the values of ni are large. For 
example, if the estimated counts are in the femtomolar range (108 molecules), then this can 
lead to quite large values of the likelihood. The counts could be converted to molar values 
but with the opposite effect that the likelihood values become quite small. An intermediate 
solution is to scale the estimated counts by the total counts, ni//ntot = ρi. Scaling the counts in 
such a manner leads to the information theory entropy [8] 
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j

k
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While Equation 5 can be interpreted within Shannon’s framework [8] as the relative entropy 
between the probability space for model A of the observed phenomena and the probability 
space for model B, a more intuitive interpretation is that it represents the relative likelihood 
of comparable phenomena for the two scientific models, as averaged over the observed data.  

One can obtain insight into the likelihood analysis by analogy with thermodynamic 
properties. For example, a “data” potential can be derived in analogy with the chemical 

potential (

€ 

ui =
∂A
∂ni

) from the likelihood ratio as follows. 
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This equation tells us that the influence of changing counts of product i on our average 
likelihood ratio is simply the log likelihood of the parameters for product i in the two models.  

Analogies to entropy (
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∂A
∂T

) and pressure (
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∂A
∂V

) are not directly possible; but temperature and 

volume are directly related to the Boltzmann probabilities, and we can examine the change in 
a model probability, 

€ 

∂
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ρ j log
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 

 
  

 

 
  

j

k

∑

=
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That is, the influence on the log likelihood of changing the model probability for product i is 
directly proportional to the ratio of the observed counts and the probability for product i. 
3. Applications to Systems Biology 
Approaches such as this will ultimately have application to hypothesis testing of large data 
sets from systems biology. For example, computational models of metabolism, such as flux 
balance analyses and stochastic simulations, can often make predictions about which 
metabolites will be present. Competing models of the metabolism of a bacterial cell can then 
be compared. In this case, the model parameters 

€ 

θa, j and 

€ 

θb, j are the predicted abundances 
of metabolite j in the respective models, and 

€ 

n j  or 

€ 

ρ j  are the experimental observations from 
a metabolomics study. Using a test of significance, one can then reject one of the models. 

As a demonstration, we have applied this approach to proteomics studies, in which the 
challenge is to select the peptide that best explains the experimental data. In this case, the 
experimental data are peak abundances from tandem mass spectrometry of unknown 
peptides. Each peptide present in the genome of the organism represents a competing 
scientific model in the form of a model spectrum. In each model spectrum, 

€ 

θa, j represents the 
probability of observing fragment j of that peptide. Equation 5 is then used to decide which 
peptide is truly present, which in turn provides information on which protein is truly 
expressed under the conditions of the experiment. 

Using this approach and highly accurate model spectra, one can obtain not only greater 
specificity but also greater sensitivity: the number of spectra that can be identified with a 
peptide is more than doubled compared with standard approaches [9]. The greater sensitivity 
and specificity are a direct result of the principled manner in which the model parameters and 
observed count information are evaluated. As mentioned above, each fragment i of a peptide 
is expected to be observed with a probability 

€ 

θa,i , while ni is the actual observed count. Each 
peptide is then evaluated as to whether it is a good match the observed spectrum by 
comparing the model spectrum of the peptide with a random (null) model spectrum. 
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LR = ρ j log
θa, j
θ0, j
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The null probability 

€ 

θ0,i  of each peak i for the random model spectrum is derived by 
averaging probabilities for a peak at the same location from all other peptides that can be 



derived from the organisms genome [10]. The principled evaluation of the count information 
and model probabilities used in scoring is important because model spectra for peptides vary 
tremendously in quality, and a scoring metric is needed that can maximally differentiate 
peptides based on their model spectra. For example, model spectra based on spectral libraries 
improve the identification rate by 50–150% compared with model spectra derived from 
statistical training over diverse sets of peptides [9].  
 
Using this approach, we have been able to dramatically increase the number of spectra that 
can be matched to biological processes in Synechococcus sp. PCC 7002 [9], a 
cyanobacterium that is a model organism for studies of photosynthetic carbon fixation and 
biofuels development. Figure 1 depicts the coupled processes involved in photosynthesis and 
carbon fixation, of which many of the proteins are found in the accompanying table. 
Photosynthesis results in the splitting of water into protons and O2. Protons are also 
generated during oxygenic respiration, resulting in a proton gradient across the thylakoid 
membrane. This proton gradient is used to generate ATP, which is in turn used to fix CO2 and 
synthesize larger reduced carbon species. Ultimately, six turns of the Calvin cycle result in 
one glucose molecule. The proteins from these cellular processes [11]—light harvesting for 
photosystem II (phycobilisomes), chlorophyll biosynthesis, CO2 fixation (Calvin Benson 
Cycle), CO2 uptake, and photorespiration—showed the large increases in number of 
identified peptides resulting from the use of the methods discussed above. The number of 
peptides identified within these five subsystems increased 50–60%. Furthermore, the number 
of peptides identified for photosystem I increased 160%, while the number of peptides 
associated with the pentose phosphate pathway increased 250%.  

Also shown at the bottom of Figure 1 is a list of the individual proteins that showed the 
largest number of identified peptides. Notably, there was a 30,000% increase in the number 
of peptides identified for the CO2 transporter of the ICT family. Bicarbonate and carbonate 
cycling is directly integrated with photosynthesis: CO2 is the carbon source for the 
photosynthetically driven synthesis of sugars via the Calvin-Benson cycle. The key enzyme 
of the Calvin-Benson cycle is Ribulose-1,5-bisphosphate carboxylase oxygenase, or 
RuBisCO, which we were able to identify 30–60% more frequently. The reason for the 
increased number of identifications is directly linked to higher likelihood ratio scores due to 
the more realistic spectral model for the spectral libraries. The peptides showing the largest 
increases in matches to spectra were not necessarily high-abundance peptides or low-
abundance peptides but, rather, peptides that were marginally identifiable using a standard 
database search. The observation that many of these peptides were involved in biological 
processes of interest, namely, carbon dioxide concentration and reduction, suggested that the 
methods discussed here will be important for increasing the accuracy and precision of 
proteomics to elucidate biological responses in general. 

 
 
 
 
 



 

 
 
  Increase   Increase 
Phycocyanin, beta subunit 86 % RuBisCO, small subunit 29 % 
Phycocyanin, alpha subunit 40 % Translation elongation factor Tu 35 % 
RuBisCO, large subunit 59 % Translation elongation factor G 168 % 
Allophycocyanin, beta subunit 113 % Hypothetical protein 

SYNPCC7002_A1950 
768 % 

Phycobilisome core-membrane 
linker ApcE 

54 % Photosystem I reaction center subunit XI 222 % 

Allophycocyanin alpha subunit 17 % Ribose-phosphate pyrophosphokinase 3,490 
% 

Fructose-bisphosphate aldolase, 
class II 

28 % Hypothetical protein  11,467
% 

Bicarbonate transporter, ICT family 
protein 

31,600% Flavoprotein 119 % 

Photosystem I subunit II 125 % Nitrogen regulatory protein P-II 59 % 
YrdC domain-containing protein 34 % Photosystem II protein 85 % 
Phycocyanin-associated rod linker 
protein 

29 % ATP synthase beta chain 33 % 

Chaperonin, 60 kDa protein 99 % Allophycocyanin B alpha subunit 121 % 
S-layer like protein; porin 28 %     

 
Figure 1. Use of a statistical log likelihood method to compare model spectra for peptides with 
experimental spectra for the cyanobacterium Synechococcus sp. PCC 7002, a model organism for 
biofuels development, led to a dramatic increase in the number of spectra that were identifiable 
with processes involved in photosynthesis and carbon fixation. The bottom panel lists the proteins 
that are identified with the most spectra, an indicator of protein abundance, and the percentage 
increase in identifiable spectra obtained when accurate model spectra are analyzed by using the 
thermodynamically inspired log likelihood.  



 
 

Informing Data Analysis with Physics-based Simulations. Unfortunately, spectral libraries 
are not available for the majority of peptides. However, it may be possible to improve model 
spectra for data analysis by informing the models with physics-based simulations. In this 
case, physical models of the gas phase dynamics of the respective peptides are the relevant 
scientific models that can inform the data analysis [12]. The log likelihood scoring function 
outlined above allows for the use of probability distributions obtained from simulations. To 
demonstrate how these probabilities can be obtained, it is necessary to break down peptide 
fragmentation into two conceptual processes, shown in Figure 3, consistent with the mobile 
proton model of fragmentation [13]. The first process is the organization of the vibrationally 
excited gas phase peptide from random configurations into a configuration from which a 
proton can be but is not yet transferred from one of the proton donor groups (N-terminal 
amine or protonated side chain such as lysine or arginine) to a backbone carbonyl oxygen. 
This process can involve large-scale structural reorganization of both backbone and side 
chain groups. We will refer to this organized state primed for proton transfers as the pre-
reactive state. The second process is the transfer of the proton to the carbonyl oxygen and the 
stretching and bending of bonds required to cross the transition state energy barrier and form 
products. Characterization of the transition state energies is exceedingly difficult even with 
the use of large compute resources because of the multitude of reaction channels that can 
lead to products. If one reaction channel dominates, then calculation of the transition state 
energy is much easier, but still a time-consuming and potentially labor intensive calculation. 
However, in the special case that fragmentation at each peptide bond occurs through reaction 
channels whose relative transition state energies do not change as a function of the position 

 
Figure 2. Structural reorganization involved in fragmentation at a peptide bond. Work must first 
be done to move the peptide from random configurations (left) into one in which the peptide is 
organized (center) for the bond-breaking steps (right). The free energy involved is proportional to 
the statistical likelihood of reaching each configuration.  



of the fragmenting bond along the peptide backbone or the specific amino acids involved, 
then it may be reasonable to estimate an average likelihood of crossing the transition state 

€ 

θ i(T)TS  from the prereactive state that can be applied to all labile bonds. In this case, the 
likelihood of fragmenting a bond can then be estimated from combining the likelihood of 
reaching the pre-organized state with the likelihood of crossing the transition state. 
 

€ 

θ i(T) fragmentation = θ i(T)pre−react ∗θ i(T)TS  
 
The likelihood of reaching the pre-reactive state from random configurations can be 
estimated from molecular simulations [7]. 
 

Environmental Proteomics. The development of highly accurate data analysis methods 
allows one to address areas have been previously challenging. One of these areas is the 
analysis of proteomics data from environmental samples. Organisms (microbes) in these 
samples may not have been previously identified; and even if they have been, they have 
typically never been sequenced. Yet matching model spectra of peptides to experimental 
spectra requires an a priori set of peptides, which are usually obtained from genome 
sequences.   

Using the methods discussed above, we can now approach this problem by comparing the 
spectra of the environmental organisms with the genomes of all organisms that have been 
sequenced to date. Currently, there are just under 2,000 fully sequenced genomes 
representing a variety of organisms. 

The approach that we have taken is to use optimization methods to match peptides and 
proteins from fully sequenced microbial genomes to the experimental spectra [14]. The 
method searches all fully sequenced genomes and optimizes proteome-spectra matches by 
iteratively eliminating microbes that are not likely to be in the sample. The method has been 
tested using samples containing blind mixtures of spectra from known microbes and samples 
containing unknown mixtures of microbes. The ability to analyze all fully sequenced 
genomes, however, requires analysis of up to 2,000 genomes which is roughly 6-10 million 
proteins and orders of magnitude more peptides against 10,000-to 30,000 or more spectra. 
This analysis requires high-performance computing. 

 
4. Programming Model and Scaling 
Programming Model. The methods discussed above have been implemented for the analysis 
of proteomics data in serial, parallel [9], and map-reduce implementations [15]. In the serial 
code an input parameter file is read, along with the fragmentation model for generating 
model spectra, the protein sequences of all organisms to be searched, and the spectra to be 
analyzed. The code loops over the spectra, scoring each against all peptides generated from 
the protein sequences that are consistent with the observed mass-to-charge ratio of the intact 
peptide reported in each spectrum. The program accumulates high scoring matches and prints 
them out in a list, sorted by likelihood ratio score. The amount of work required to score a set 
of spectra depends on a variety of factors that include the number of candidate peptides to be 
analyzed per spectrum, the length of the peptides, the number of peaks from each peptide that 
match peaks from the experimental spectrum, and the number of spectra to analyze. The time 
for analysis of each spectrum cannot be predetermined without doing two-thirds of the work 



required to actually score the spectrum, which makes an a priori determination of run time 
for a spectrum impractical. Hence, we use a dynamic scheduling scheme facilitated by a 
server/client process model. 

The parallel version of the MSPolygraph is essentially a task-scheduling wrapper around the 
serial version of the code. In the parallel version we use the MPI (Message Passing Interface) 
standard for communication. The input files are placed on a globally visible file system 
(mounted on all the compute nodes). Each processor reads in to its own local memory the 
input files, and we then use a dynamically scheduled server-client model to control which 
process (mpi rank) scores which spectrum. A processor's behavior is controlled by its mpi 
rank. One processor is the dedicated server process (mpi rank 0), and all others are 
considered client processors. 

After reading the input data, the server process issues a nonblocking receive to each client. It 
uses a simple counter to determine which task to send to a requesting client. It polls clients 
for responses indicating that a spectrum has been completed (or during the first pass that a 
client has initialized and is ready to start scoring) and replies with another index for a 
spectrum to be scored if there is one or a quit message if all tasks have been distributed. The 
manager utilizes nonblocking sends so as not to need to wait for the clients to receive their 
messages. A different buffer for each client is used. Since the outgoing messages are only an 
index as to which spectra to score, and the incoming messages are a fixed length summary 
line, only a small amount of space is required even for a very large number of clients. Also, 
since the server hands out a new index to a “ready to start” or “completed spectrum” message 
from a client, no more than one message per client is ever in flight. After all tasks have been 
handed out, the server processor continues polling for responses till responses for all spectra 
have been received. 

Each client process is initiated by reading the input files from the global file system, and 
opening its own output file for printing results. It then issues a nonblocking receive for an 
index of the next spectra to be score and sends a “ready to start” message to the server 
processor. The client then enters a communication and processing loop in which the client 
repeatedly does the following: 

1. Waits for server message indicating which spectrum to process (or a quit message).  
2. Processes the spectrum  

 
 
Figure 3. Time to solution (left) and parallel efficiency (right) of the MSPolygraph code that 
implements methods discussed here. The results shown are for analyzing 1,258 fully sequenced 
genomes against 18,929 spectra on the Chinook supercomputer at EMSL. 



3. Writes data and flushes the results to its output file. 
4. Issues a nonblocking receive for the next spectrum index.  
5. Sends a summary message for the scored spectrum to the server. 

 
Scaling. Since the processing time for a single-processor job, T(1), takes longer to run on a 
single node than the job policy allowed at the time these runs, we instead generate a weak 
scaling curve replacing T(1) by 128*T(128). This amounts to taking the efficiency at 128 
processors to be 1 for comparison purposes. We note that 

€ 

T(1) T(128)  must be less than or 
equal to 127, dinvr the master processor does no work, and hence 

€ 

T(128) ≥T(1) /127 . The 
scaling results are shown in Figure 2. The fall-off in efficiency shown in Figure 3 at 1,024 
processors is an indicator that we are hitting inefficiency in the MPI infrastructure layer at 
scale, most likely due to too many messages being passed. This could also be also due to 
input/output bottlenecks if many processors are simultaneously writing output files. 
However, runtime monitoring doesn’t indicate that the code is anywhere close to the I/O 
bandwidth limits on the machine, making it unlikely that an I/O bottleneck causes the 
efficiency loss. 
 
Open source code implementing the methods discussed here for the analysis of proteomics 
data is available at http://omics.pnl.gov. The code is licensed under the Educational 
Community License 2.0. 
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